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Abstract Plant phenotyping is a vital process that helps farmers and researchers
assess the growth, health, and development of a plant. In the Philippines, pheno-
typing is done manually, with each plant specimen measured and assessed one by
one. However, this process is laborious, time-consuming, and prone to human error.
Automated phenotyping systems have attempted to address this problem through
the use of cameras and image processing, but these systems are proprietary and
designed for plants and crops which are not commonly found in the Philippines. In
order to alleviate this problem, research was conducted to develop an automated,
high-throughput phenotyping system that automates the identification of plant
greenness and plant biomass of rice. The system was developed in order to provide
an efficient way of phenotyping rice by automating the process. It implements
various image processing techniques and was tested in a screen house setup con-
taining numerous rice variants. The system’s design was finalized in consultation
with and tested by rice researchers. The respondents were pleased with the system’s
usability and remarked that it would be beneficial to their current process if used.
To evaluate the system’s accuracy, the generated greenness and biomass values
were compared with the values obtained through the manual process. The greenness
module registered a 21.9792% mean percent error in comparison to using the Leaf
Color Chart. On the other hand, the biomass module yielded 206.0700% mean
percent error using compressed girth measurements.
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1 Introduction

Plant phenotyping is the process of gathering the observable traits of a plant in order
to assess its growth, health and development which is vital in the assessment of its
more complex traits [1]. This process helps in finding out how to increase the yield
and resilience of crops. In the middle of 1990s, plant breeders depend on intuition
to select different traits that can increase crop yield or resiliency, but with the advent
of modern genetics, scientists and farmers now have the capability to breed crops
selectively with precision and accuracy [2]. However, they still need to grow, and
analyze the genetic traits of these plants to aid in selective breeding making plant
phenotyping vital in the selective breeding process [1].

2 Related Works

2.1 Related Works on Automated Phenotyping Systems

Existing technologies utilize image processing to automate plant phenotyping. The
Scanalyzer 3D Phenotyping platform [3] developed by LemnaTec is an automated
plant phenotyping system that can phenotype mature plants, such as corn, tomato
and rice. It is capable of simultaneously phenotyping plants in large quantities by
automatically moving them into a stereoscopic camera by placing all the plants in a
conveyor belt. For rice, the system uses the HTS Bonit, an image processing
software that analyzes the area, color, and height of the leaves [3]. While the
Scanalyzer 3D has been properly tested and deployed, the platform is proprietary
and the investment on infrastructure to deploy it is expensive [4].

PHENOPSIS [5] is an automated system by Optimalog that uses image pro-
cessing for phenotyping Arabidopsis thaliana. It uses a mechanical arm to optimally
position a displace sensor, and a camera on each plant to collect phenotypic data
such leaf area, leaf thickness, and proportions of leaf tissues. PHENOPSIS is a
proprietary solution designed for the French National Institute for Agricultural
Research. The system only handles phenotyping of Arabidopsis thaliana and it is
only designed to work with screen houses used by the institute [5].

The paper published by Tsaftaris and Noutsos [4] details a setup that is low cost
and easy to deploy in nature, making it the most suitable model among all the other
researched related systems to Luntian. In order to achieve such characteristics, the
system discussed in the paper makes use of digital cameras which are inexpensive
in terms of mass purchase and satisfactory in taking the required images.
Additionally, each camera has been set up to utilize an open source firmware called
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Canon Hack Development Kit. This firmware allows further manipulation of digital
camera options which in turn, allow the researchers to tweak the settings to various
factors that are present in the system environment. Examples of some manipulated
settings are manipulation of the ultra intervalometer for taking time lapse images
and utilizing the long exposure intervalometer for taking night time photos.

2.2 Related Works on Image Processing Pipelines

HTPheno is an image processing pipeline specifically made for plant phenotyping and
was designed by Hartmann et al. [6]. HTPheno is not designed to any specific phe-
notyping setup and so it is made to be flexible and highly adaptable to different plant
phenotyping setups and environments. HTPheno can analyze and collect 6 different
plant phenotypic traits using only the top and side view images of a plant specimen.

The HTPheno pipeline makes use of different image analysis algorithms such as
region definition, object segmentation, morphological operation and finally, com-
pilation of the analysis results. For the software to properly analyze the phenotypic
traits of a plant, calibration is first done using image segmentation, which partitions
an image into different components or segments. This is done through color image
segmentation with the multidimensional histogram thresholding approach in both
Red Green Blue (RGB) and Hue Saturation Value (HSV) color spaces.
Segmentation is done on these two color spaces instead of just one in order to
accommodate varying light conditions. One drawback to this approach is the case
wherein foreign objects close to the plant have a color similar to it, as that object
will be segmented into the plant as well.

After all the segments in the image have been identified, the object of interest,
the plant segment, is extracted in the image. To reduce the drawback of foreign
objects being included in the plant segment, morphological opening is applied in
the extracted image. Morphological opening performs erosion, or reducing the
segment of interest by eroding its sides, and then dilation, which expands the
segment of interest by enlarging or dilating its sides. Morphological opening
removes small foreign objects in the plant segment because of erosion, and it
smoothes the sides of the plant segment through dilation. This technique results in a
plant segment with a lower noise level.

Finally, the plant segment is analyzed for phenotypic data. The plant segment is
transferred back to the original image, which now forms an outline of the plant.
From the segment, the software can calculate various plant phenotypic data and
outputted for analysis.

Another system used an image processing pipeline for gathering phenotypic data
for Arabidopsis thaliana [7].

To analyze and collect phenotypic data from an image, the first step is to convert
it from colored to an 8-bit grayscale image, with the process assigning relatively
greater pixel intensity for green pixels. Then, image segmentation is performed on
the image using a binary mask. The binary mask is created by selecting pixels with
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a grayscale intensity greater than 130, which means the brighter areas of the image,
or areas of the images that were originally greener, are selected. Afterwards, holes
inside this binary mask that are caused by either particles resting on the plant or spots
in the leaves are filled. The binary mask is then converted into objects, to create the
plant segment. To smooth the leaf edges and reconnect some objects of the plant
segment that became disconnected during the segmentation process, the objects are
also dilated and eroded. From this, phenotypic parameters are calculated for the plant
segment and are saved into the database. The images generated by the pipeline are
shown, and the user can choose to detect and remove incorrectly identified images,
as well as make annotations of the image to include additional information.

Despite the ability of the current systems to automate plant phenotyping by way
of image processing, these systems are not designed for crops that can be grown in
the Philippines. Additionally, these systems are expensive to deploy. Thus, there is
a research opportunity to create a phenotyping system that will automate the pro-
cess through image processing but will be more adaptable to the Philippine setting.

3 Luntian

A system called Luntian, the Filipino word for “green”, was conceptualized and
developed which provides automated, high-throughput, phenotyping that can
determine the greenness and biomass of rice crops. The manual process of phe-
notyping greenness and biomass takes a minimum of 24–48 h to complete. The
time taken in manual phenotyping also increases significantly as more test beds are
included in the phenotyping process. As the system is automated, it is going to
have a relatively higher throughput than that of the manual process. In addition, the
system also provides a way to phenotype different types plant specimens in batches,
without losing considerable accuracy.

Luntian is designed to work together with a data gathering hardware setup that
automatically captures images of plant specimens that is fit for image processing.
The captured images are automatically sent to the system for preprocessing and
phenotyping.

The system utilizes numerous image processing algorithms that are used to
determine the greenness and biomass of plant specimens. Image processing algo-
rithms are also used to normalize images and reduce the impact of changing
environmental conditions to the phenotyping process. The system also reduces
noise from the images that might affect the phenotyping process. Luntian is built on
OpenCV, an image processing library that provides functions to perform the
aforementioned algorithms.

Luntian implements a database that contains the phenotypic data from the
greenness and biomass modules and the file path of the raw images gathered by the
cameras. The actual raw images gathered are stored in a separate directory. This
implementation allows the researchers to easily access these needed data in mon-
itoring the progress of the rice crops.
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Luntian is just one of two components in the Butil system, which aims to
provide researchers an automated method of plant phenotyping. The other com-
ponent is Seight, which, through the use of different image processing algorithms,
obtains the plant height and tiller count from the images taken by the hardware
setup. Luntian and Seight share the same image gathering setup, and both interface
with the same data management module. Even with the separation of components,
the intention is for Butil to be ran and used by crop scientists as one complete
system.

3.1 System Functions

(1) Data Capturing Module: The Data Capturing Module is responsible for gath-
ering the data for phenotyping. Researchers can schedule the phenotyping dates
or capture appointments. These appointments will trigger the camera and a
certain date and time, gather the raw images captured and store them into the
database. Remotely triggering the cameras is done using the OpenCV API. The
use of this library not only enables the cameras to be triggered through func-
tions that are executed according to the scheduled camera appointment, but can
also immediately send the captured images to the image processing modules
since OpenCV is also used in these modules.

(2) Preprocessing Module: The PreprocessingModule uses the raw images gathered
by Data Capturing Module and prepares and processes them for automated
phenotyping. Color balancing is done through a technique called Normalization.
This is done through shifting the values the Saturation and Value channels in the
HSV color space to produce a softer curve in the histogram. Normalization in the
system is done with the OpenCV function normalize() which attempts to nor-
malize the value range of the two color spaces by shifting and scaling the values.
After correcting the color balance, Segmentation then isolates the plant from the
whole image, making phenotyping easier and more accurate. The segmentation
algorithm used in this module is Otsu Thresholding which considers the darkness
intensity of pixels in grayscale. Finally, noise filtering is done on the segmented
image using morphological operations.

(3) Greenness Module: The manual method of phenotyping involves comparing
the color of the plant with the Leaf Color Chart (LCC). The Four Panel LCC,
shown on Fig. 1 determines the chlorophyll content or greenness of the plant in
four values (2, 3, 4, 5). The Greenness Module analyzes the preprocessed
images and determines the greenness of the plant by its LCC values. To
determine how green the plant truly is, the greenness intensity of the plant will
be looked at using the mean Hue value of the plant. Since the Hue of the plant
is not reliant on the Saturation and Value spaces, it provides a more thorough
conditions that will be less affected by lighting conditions. The mean Hue of the
plant is compared to the Hue values of the four LCC panels. The LCC value of
the plant is estimated by using the LCC Panel’s Hue value closest to the plant’s

Towards an Automated, High-Throughput Identification … 121



mean Hue value. After determining the LCC value of the plant specimen, the
phenotypic data is saved to the database, allowing researchers to retrieve the
estimated phenotypic data in the future.

During the process of development, the Hue value of the LCC has to be retrieved
as comparison points to the mean Hue value of the plant. The Hue values of each
LCC panel were not available in any of the manufacturer’s documentation. To get
the values, two methods were considered for the experimentation process. The first
method is to get the Hue value by taking a picture of the LCC and defining that as a
Hue value for all image samples. The second method to dynamically change the
LCC value for each image sample.

In the first method, the Hue values of the LCC were retrieved by capturing a
photo of the LCC and determining its Hue values in Adobe Photoshop. Since
OpenCV stores Hue values in integers 0–180, and Adobe Photoshop determines
Hue values in 0°–360°, the values retrieved in Photoshop is divided in half. The
Hue values of each LCC panels are in Table 1.

In the second method, the Hue values were retrieved by dynamically getting the
Hue values through sampling the LCC attached on the board. The LCC was
attached to the segmentation board as a point of reference, and this region in the
image samples was isolated. After isolating the LCC in an image each panel was
sampled to dynamically retrieve the Hue values of each LCC panel.

The first and second algorithms of determining greenness were tested and
compared with each other. The discussion of the results of both algorithms will be
detailed in the Results section. Since the first algorithm obtained the lesser per-
centage error between the two, it was then used as the final algorithm in the system.

(4) Biomass Module: The Biomass Module analyzes the pre-processed images and
approximates the biomass of the plant by estimate its plant volume. Plant radius

Fig. 1 The four panel leaf
color chart

Table 1 Corresponding LCC
and OpenCV hue values using
the first method

LCC panel OpenCV hue value

2 32

3 44

4 57

5 80
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is first determined by counting the back pixels per row of the resulting binary
image. The pixel counts are then averaged to get the mean pixel count. This
mean count is converted from pixels to centimeters and used as the plant radius.
Approximation of biomass is done by estimating the plant’s volume when
packed inside a cylinder. The formula for the volume of a cylinder is used to
compute the approximate biomass of the plant.

volume ¼ Pradius2height ð1Þ

The height will be retrieved from the Seight system which approximates the
height of the plant.

(5) Data Management Module: The Data Management Module is the main inter-
face of the system. The user can use this module to view the collected phe-
notypic data, and change system settings. This component is in the form of a
web application in order to make the system accessible to the researchers in any
location.

Subsection Physical Environment and Resources Luntian works alongside a
hardware setup that will capture the images needed for phenotyping. As a proof of
concept, the data capturing setup was tested on one test bed in a screen house. The
test bed has two plants placed in front of the camera. These two plants serve as the
representatives of the whole test bed and are used for phenotyping. A separation
board was used to isolate the plant specimen from the background. Specifications of
the spearation board is detail in Fig. 2.

IP cameras were used in order to make use of the remote capturing functionality
available in the OpenCV library. The cameras must be positioned in the screen
house properly for optimal data gathering. The measurement and specifications for
the placement of the data gathering setup are shown in Fig. 3.

The IP camera that is used in the setup during the time of development and
testing is D-Link DCS-932L. It has a resolution 640 � 480 Video Graphics Array
(VGA) resolution and is compatible with the OpenCV framework.

volume =Πradius2heightFig. 2 Separation board
specifications
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4 Results

4.1 Testing Methodology

For the purposes of testing the accuracy of the system’s greenness and biomass
algorithms, 28 plant specimen of C4 rice varying in size, greenness and plant stages
were chosen for data capturing. These plants were chosen at random to give variety
to different plants. At the time of capturing, 14 plants were on the mid-tillering
growth stage and 14 other plants were on the tillering growth stage. The two growth
stages give different plant structure and color to the plants and this gives a more
thorough characteristic in the testing data. This can be seen in Fig. 4.

Following the planned data gathering setup, 28 images were captured by the
system, one for each plant. After data capturing, crops were manually phenotyped
for plant greenness (using the LCC), girth of the plant when tightly compressed,
and girth of the plant when loosely compressed. In order to measure the girth when
tightly compressed, the tillers are compacted as close as possible to each other to
reduce the gaps in between then a tape measure is used for determining the cir-
cumference or girth. For the loosely compressed girth, the tape measure is placed
around the edges of the plant without compacting the tillers. After assessing the
measurements, the compressed girth was used in comparing the results since it is
more appropriate to the formula used for computing the biomass which was defined
in the previous chapters. The manual phenotyping process was done by the
researchers to ensure the accuracy of the manual phenotypic data. The data taken
from manual phenotyping were used to assess the accuracy of the system.

Fig. 3 Measurements and
specifications for the data
gathering setup
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The mean error difference was computed by getting the mean of the difference
between the manual phenotyping results and the automated phenotyping results.
The percentage error for each specimen was computed using the formula below.
The mean percentage error was computed by averaging the percentage error for
each specimen.

percenterror ¼ automatedval� manualval
manualval

� 100 ð2Þ

4.2 Greenness

In the development of greenness, two algorithms were tested in parallel so results
can be compared with one another. The first algorithm is to rely on static Hue
values of the LCC for all images. The other algorithm is to rely on dynamic Hue
values of the LCC that changes for every image. Two results of the two algorithms
will be discussed and compared in detail.

After processing the 28 images through the first algorithm, the system has
registered a mean percentage error of 21.9792%. While the accuracy displayed by
the system seems fairly high, the small range of values (2–5 LCC values) means the
percentage error in the system can result in discrepancies between the actual value
and approximated value significant enough for the greenness algorithm to become
unreliable. The mean error difference of the LCC value generated by the system
compared to the Manual Phenotyping method is 0.7083, so on average the LCC
Value generated by the system can have an error up to more or less .71 the original
value.

The second algorithm however, yielded a much higher mean percentage error of
33.2066%. This means that using the second algorithm with the dynamic Hue
values has a less accurate estimation that using the first algorithm, although it has

Fig. 4 Mid-tillering growth
stage (left) and Tillering
growth stage (right)
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the advantage of being more adaptable to different conditions. The mean error
difference for the second algorithm is 1.0833, which is also higher than the first one.
In the second algorithm, the error difference can mean it can over or underpredict by
1 LCC value.

Further analysis show that a number of factors that may affect the accuracy of the
system. One major factor that affects results is the resolution of the camera. The
640 � 480 pixel resolution results in less pixels being used by the algorithm for
determining greenness. The resolution also affects the segmentation of the plant
(seen in Figs. 5 and 6) and this is because the delineation and edges of the plant are
clearer and JPEG compression is less evident on larger images. Segmentation in
lower resolution images can result in loss of data with the upper tillers not being
segmented as part of the plant.

Another factor that can affect the accuracy of the greenness algorithm and its
result is the effect of the daylight conditions inside the screen house. Shadows and
uneven lighting can cause the color of the plant to vary when compared to actual
inspection of the plant. Plant images were taken in daylight conditions at 2:45 PM.

Fig. 5 An image
segmentation of the plant in
an image with a resolution of
2000 � 3008

Fig. 6 An image
segmentation of the plant
using the 640 � 480
resolution image captured by
the system
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External lighting equipment was not used in the hardware setup, so daylight and
shadows caused un-optimal lighting conditions.

4.3 Biomass

After processing the images with the algorithms, some images were removed due to
excessive noise that will affect the results. A sample of removed images is shown in
Fig. 7. It can be seen that even if the area is white, it was not successfully removed
and was included as part of the plant. The error is the same for all removed images.
The final dataset contains 23 samples.

Biomass results show that there is no exact trend in the differences of the
measurements from the manual method with compressed radius, and the automated
method values. There are also large differences between the values. This is caused
by already having differences in the estimated radius values from the system, which
greatly affected the estimation of biomass. Biomass values computed using com-
pressed girth have a mean percentage error of 206.0700% while the mean per-
centage error of the radius for compressed girth is 66.7573%. Since there are
already large percentage errors in estimating the radius, the values highly affected
the results. Another factor that affected the results is the conversion of pixels to cm.
Using the average number of pixels from all images is not sufficient to provide
accurate results. Since the conversion was not exact, there was no exact trend in the
differences of the results of the automation with the manually measured values.

The results show that there are outliers in the dataset. After further analyzing
some of these outliers, it can be inferred that the presence of dark portions affect the
measurements since these were not completely preprocessed in the binary con-
version of the pictures. Despite the fact that the system was already improved by
cropping the image first before converting to binary in order to reduce the lighter
shadows, there were still dark portions which the system was not able to

Fig. 7 Sample of removed
image because of improper
thresholding
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successfully differentiate from the plant. Figure 8 shows a sample image with its
corresponding binary equivalent generated by the system. In order to address this
issue, the images with excessive noise were removed as mentioned earlier. For
further studies, the lighting setup should be improved for better results.

It can be seen that in the right portion of the cropped binary image, the dark
portion behind the plant was not successfully preprocessed. Since this image is the
one used for estimating the radius, the result was a greater radius value than the
manually measured radius of the compressed and loose plant.

Another issue is that plants have different structures. There are some which have
leaves in the region of interest which also became noise as shown in Fig. 9. In
addition, there are also plants that appear wide in the front view but are actually
linearly distributed. Automated results from such images may be larger than the
actual since the tillers are not compressed. It could be possible to tie the tillers
together before taking the picture in order to have more accurate results.

Fig. 8 Image sample with
preprocessing issue

Fig. 9 Image sample with
plant structure issue

128 R. J. C. Buzon et al.



5 Conclusion

The Luntian system was created for the benefit of experimental crop rice
researchers to address their needs of an automated system that can speed up the
phenotyping process. Throughout the study and the development of the system,
consultations were made with the C4 rice researchers to match their manual phe-
notyping process and translate it to the automated system. Data from their manual
phenotyping process were used as comparison data and metrics for determining the
accuracy of the completed system.

Two greenness algorithms were tested in the research. The first algorithm, which
relied on static LCC hue values for all images, yielded the most accurate results
between the two in estimating the actual LCC values of the plant. The second
algorithm, which relied on dynamic LCC values that is newly sampled for every
image, yielded a less accurate result even though it has the advantage of being more
robust than the first algorithm. While the determining greenness is shown to be
accurate based on the results, both algorithms can prove to be unreliable to the
researchers because of the relatively large average percent error especially when
considering the level of accuracy needed for their research. The relative inaccuracy
and unreliability of the algorithm is mainly rooted in how the image is captured,
with factors such as uneven lighting and the low resolution of the camera used all
playing a significant role in making both algorithms unreliable.

Based on the results, there are significant percentage errors in the biomass and
radius estimations and there is no definite trend when compared with the com-
pressed girth values. Further studies on the values may have to be done in order to
discover a trend and use it to improve the algorithm. One recommendation is to use
distribution fitting in order to find whether there are relationships between the data
in order to improve the accuracy.

Overall, results yielded by the study can serve as a step towards automating plant
phenotyping, which is a significant help for the researchers in developing their
crops. In the future, effective automation would speed up the data gathering process,
which would be more evident in larger set-ups. By curtailing the extent of human
intervention in the phenotyping process, inconsistencies brought about by human
error would consequently be reduced.
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