

1

Generalized Distributed Garbage Collection

Chua, Neil
2401 Taft Avenue, Manila 1004,

National Capital Region
catchlines@yahoo.com

Lai, Francis
2401 Taft Avenue, Manila 1004,

National Capital Region
fplfrancispelai@yahoo.com

Mondejar, Jeffrey
2401 Taft Avenue, Manila 1004,

National Capital Region
jmmonde@yahoo.com

Samson, Briane

2401 Taft Avenue, Manila
1004, National Capital Region

bvsam2003@yahoo.com

Tan, Kent
2401 Taft Avenue, Manila 1004,

National Capital Region
cant_10@yahoo.com

ABSTRACT
In today’s time, more and more complicated programs are being
released; from the traditional, centralized client server type to
the distributed environmental one, they create further problems
such as managing resources, accessing concurrency, incidence
of communication infrastructure, deprivation of security and
privacy. This is for the reason that not all resources that are
being made may last for an extended time. Eventually, some of
them may become idle and would no longer be in use therefore
leasing distributed garbage collection to come in. There will be
an implementation of distributed garbage collection but will
frequently do not perform well in a disseminated manner and
will only focus to a specific environment. Thus, a new algorithm
was formulated by analyzing the best features of the current use
of distributed garbage collection method. The features were then
compiled into producing an improved system. After
implementing and testing the generalized distributed garbage
collection algorithm, results show that based on performance in
terms of processing time, it runs in linear time as opposed to the
exponential time of available algorithms.

Keywords
Garbage collection, distributed system, multi threading

1. INTRODUCTION
In today's time, there had been a lot of emergence in a lot of
things especially in the software and technology department and
as these technologies emerge, many solutions has been created
and at the same time a lot of problems arises, as one closes
another opens. One of the most popular architecture in the
software development is the distributed architecture which came
from server client architecture and a lot of problems or
optimization problems have been created by this architecture.
One of these problems is garbage collection. Today there has
been many implementation and research about garbage
collection but usually the implementation of garbage collection
in distributed manner have several drawbacks, one of which is
that the implementation is an adapted algorithm that it is usually
specified to a given environment and/or language and the other
problem is that most of the implementation does not work well
in a distributed manner [2]. In light of this, a general or standard

algorithm for distributed garbage collection was formulated
based on existing algorithms and by doing this we would like to
identify best features of different algorithm, also try to identity
their disadvantages and compare it to other algorithm.

Several distributed garbage collection algorithms have been
formulated for different programming languages applying
different methodologies [2]. However, there has not been a
distributed garbage collection algorithm which can be used for
all programming languages [6]. This research then focuses on
formulating a general or standard distributed garbage collection
algorithm which can be implemented on most programming
languages. In order to do this, only the best features from the
different algorithms identified were chosen. The selection was
based on a criterion which can be found in Chapter 3. The
standard algorithm is a mash up of these best features.

In a distributed environment, global and local distributed
garbage collection algorithms must be implemented. In this
research, the focus would be on a standard local algorithm. It is
designed on a shared-memory multiprocessor. The programming
language used to test the algorithm is Java.

2. DANGLING POINTER AND MEMORY
LEAKS
Two of the most annoying errors involve in the computer system
and operations are the unreclaimed memory (memory leaks) and
premature reclamation (dangling pointers) [5] [17].

2.1 Dangling Pointers
A dangling pointer is a reference to storage that is no longer
allocated. Dangling pointers are malicious because they seldom
crash the program until long after they have been created, which
makes them difficult to trace [4]. They come about when
programmers create, utilize and then free an object in memory
but the object’s pointer value does not change, such case is a
null pointer. Rather, the pointer is pointing to the de-allocated
memory location. Thus the term “dangling” since it points to
memory that may no longer hold a valid object [7].

C++, an object-oriented programming language that does not
rely on garbage collection makes it easy to create dangling
pointers. Here are some examples [4]:

delete [] s1;

2

delete [] s2;
return f (s1, s2); // s1 and s2 are
dangling pointers

This code will probably appear to work unless f or one of the
functions that are called during the activation of f happen to
allocate heap storage. When the bug does show up, it will
probably look like a bug in f or in one of the functions that f
calls.

typedef Foo_ * Foo;

Foo newFoo (char * x) {
 Foo_ tmp(x);
 return &tmp;
}

This is the classic technique for creating a dangling pointer in C.

typedef char * Foo;

Foo newFoo (char * x) {
 Foo tmp = new char [strlen (x) +1] ;
 strcpy (tmp, x);
 delete [] x;
 return tmp;
}

Here newFoo creates a dangling pointer by deleting the client's
C-style string.

typedef char * Foo;
Foo newFoo (char * s) {
 return s;
}

If newFoo is supposed to return a Foo whose lifetime is
independent of the lifetime of its argument, then a dangling
pointer will be created when a client deletes the C-style string
that was passed to newFoo. The bug might appear to lie in the
client code, but newFoo would be the real culprit.

class Foo {
 public:
 Foo (char * x) : len(strlen(x)),
name(x) { }
 private:
 int len;
 char * name;
};

Foo newFoo (char * s) {
 return Foo(s);
}

Once again, a dangling pointer will be created when a client
deletes the C-style string that was passed to Foo or newFoo.

class Foo {
 public:
 Foo (char * x) {
 len = strlen (x);
 name = new char[len + 1];

 strcpy (name, x);
 }
 virtual ~Foo () {
 delete [] name;
 }
 private:
 int len;
 char * name;
};

Foo newFoo (char * s) {
 Foo foo = Foo(s);
 return foo;
}

This code fixes the previous bug by introducing three new bugs.
The most obvious is that the compiler inserts an implicit call to
foo.~Foo() when newFoo returns. This implicit call
deallocates foo.name. Hence the Foo that is returned by
newFoo always contains a dangling pointer.

The other bugs are illustrated by the following client code:

Foo f1 = newFoo ("hi there");
Foo f2 = f1;
Foo f3;
f3 = f2;

Since no copy operator is defined, the compiler will implicitly
define a copy constructor that makes Foo f2 = f1 roughly
equivalent to:

Foo f2;
f2.len = f1.len;
f2.name = f1.name;

Thus f2.name becomes the same pointer as f1.name.
Similarly, no assignment operator is defined, so the compiler
will implicitly define an assignment operator that makes f3 =
f2 roughly equivalent to

f3.len = f2.len;
f3.name = f2.name;

Thus each of f1, f2, and f3 contain exactly the same pointer.
When they go out of scope, that pointer will be deallocated not
once, but three times.

A storage leak would be created if we were to remove the
destructor or to remove the call to delete, so those are not good
alternatives. What we need is a copy constructor and an
overloaded assignment operator.

class Foo {
 public:
 Foo (char * x) {
 len = strlen (x);
 name = new char[len + 1];
 strcpy (name, x);
 }

 virtual ~Foo () {
 delete [] name;

3

 }

 Foo (const Foo & foo);
// copy constructor
 const Foo & Foo:operator= (const Foo
&); // assignment operator
 private:
 int len;
 char * name;
};

// copy constructor
Foo::Foo (const Foo & foo) {
 len = foo.len;
 name = new char [foo.len];
 strcpy(name, foo.name);
}

// assignment operator
const Foo & Foo::operator= (const Foo &
rhs) {
 delete [] name;
 name = new char [rhs.len + 1];
 strcpy(name, rhs.name);
 return *this;
// so x = y = z will work
}

Foo newFoo (char * s) {
 Foo foo = Foo(s);
 return foo;
}

This code still contains a bug. Consider the client code:

 Foo f1 = newFoo ("hello");
 Foo f2 = newFoo ("goodbye");
 f1 = flag ? f1 : f2;

The assignment represents an implicit call to
f1.operator=(flag ? f1 : f2). Suppose flag is true,
so the value of the right hand side of the assignment is a
reference to f1. The code for f1.operator= begins by
deleting f1.name. It then passes the dangling pointer
f1.name as both arguments to strcpy. Following the
assignment, f1 contains a dangling pointer. When f1 goes out
of scope, and its destructor is called, the delete [] operator
will be called on f1.name for the second time.

The solution for this problem is to make the assignment operator
check whether this is equal to the right hand side:

const Foo & Foo::operator= (const Foo &
rhs) {
 if (this == &rhs) {
 delete [] name;
 name = new char [rhs.len + 1];
 strcpy(name, rhs.name);
 }
 return *this;
// so x = y = z will work
}

2.2 Memory Leaks
Memory leak is another problem that may occur in the computer
system that leads to poor performance and failure. Memory leak
is when the system does not manage its memory allocation
properly [3]. When you forget to free a block of memory
allocations with the operator, say, new then memory leaks occur.
This will lead to application’s run out of memory and may even
cause the system to crash. Here are some examples [12]:

First, delete it before reallocating it.

char *string;
string = new char[20];
string = new char[30];
delete [] string;

In this example, there is the new and delete operations. The goal
is to find the leakage. Noticeably there are two consecutive
memory allocations by means of the string pointer, but
something seems to be missing. There should be a delete []
statement right after the first allocation and then try to reallocate
using a different size parameter. If this is not done, the second
allocation will assign a new address to the string pointer while
the previous one will be lost. This makes it impossible to free
the first dynamic variable further on in the code, resulting in a
memory leakage.

Second, a pointer to each dynamic variable must exist.

char *first_string = new char[20];
char *second_string = new char[20];
strcpy(first_string, "leak");
second_string = first_string;
delete [] second_string;

This example shows a memory leak. In detail, the address of the
dynamic variable associated with second_string, as a side-
effect of the pointer assignment, was lost so it cannot be deleted
from the heap anymore. Thus the last line of code only frees the
dynamic variable associated with first_string, which is
not desired.

The main idea is to try and not lose the addresses of dynamic
variables as one may eventually not be able to free them.

Lastly, monitor local pointers.

void leak() {
 int k;
 char *cp = new char('E');
}

Noticeably, both the k and cp variables are local so they are
allocated on the stack segment. Then when it comes the time to
exit the function, they will be freed from memory as the stack is
restored. But the dynamic variables associated with the cp
pointer were not erased from heap at function exit.

2.3 Mark and Sweep Garbage Collection
Mark and sweep is the first garbage collection technique for
automatic storage reclamation [11]. Using this, unreferenced
objects are not reclaimed immediately. Rather, they were
accumulated as garbage, undetectable and unreachable until all

4

available memory has been exhausted [7] [15]. In doing so, the
execution of the program will be temporarily suspended until all
unreferenced objects are reclaimed. Then the execution of the
program will be resumed [15].

Mark and sweep is known as the tracing garbage collector
because it will exhaustedly trace out the collection of object
whether directly or indirectly accessible by the program. All
accessible objects are referred to be live. All inaccessible objects
are known as garbage.

The algorithm has two phases: mark phase and the sweep phase.
In the first phase, it marks all the accessible objects. In the
second phase, it scans through the heap and reclaim all
unmarked objects (garbage) [15].

3. SPECIFIC CRITERIA USED
These are the specific criteria used in the evaluation of the
different features in a distributed garbage collection algorithm.

First would be safety. In this criterion, only garbage should be
reclaimed. Next would be that the collection should be
complete. All objects that are garbage at the start of the garbage
collection cycle should be reclaimed by its end. In particular, it
should be possible to reclaim distributed cycles of garbage.
Third would be concurrency. Distributed GC should not require
the suspension of mutator or local collector processes; distinct
distributed garbage collection processes should be able to run
concurrently.

Efficiency should also be considered in evaluating features.
Garbage should be reclaimed promptly and without delay.
Another criterion would be expediency. Whenever possible,
garbage should be reclaimed despite the unavailability of parts
of the system. Next would be scalability. Distributed GC
algorithms should scale to networks of many processes. Lastly,
the feature must be fault tolerant. Memory management system
should be robust against message delay, loss or replication or
process failure.

4. GENERALIZED DISTRIBUTED
GARBAGE COLLECTION
As mentioned, this new algorithm made use of different
features, namely: time-to-live, clustering heaps, mark and
sweep, and cycle detection. These features are then put
strategically into different modules which will be discussed in
this section.

4.1 Object Creation Module
This module has three phases namely, object creation, run time
and, object registration.

On object creation of a certain process, the object will have a
parameter to determine the lifespan of the object. The lifespan
may vary according to the type of objects created.

The lifespan of an object will be determined by its Time-to-
Live(TTL) parameter. The TTL value will determine if the
object is ready for garbage collection or not.

The object will also have an extra parameter called
“Marked/Unmarked” to be used by the Mark and Sweep
Module.

After object creation, objects that are created will have to be
registered in order to determine their location on garbage
collection.

Lastly, after registration, the objects will run their course for
what they were meant to do. The objects will terminate on their
own when their TTL time runs out.

4.2 Garbage Detection Module
In this phase, the system undergoes three processes namely,
garbage detection, TTL timer detection and clustering.

This module starts off by simultaneously detecting garbage
objects with all the programs in a simulated distributed setting.
In detecting garbages, it starts by determining which among the
objects has an expired TTL timer. In the event that the TTL
timer has expired, the garbage detection and collection process
will start. After detecting which are garbage, the algorithm must
now determine which among the objects are ready for garbage
collection. To do this, the objects are clustered into heaps
determined by their common attributes. Objects that share the
same set of resources are clustered into one heap, objects that
have expired TTL timers are clustered in another and so on.

4.3 Garbage Collection Module
In the last phase, the system undergoes marking, cycle detection,
sweep and TTL timer refresh.

In this module, the system scans the set of heaps to determine
which objects are ready for collection, those objects that are
unreachable, by marking the objects parameter
“Marked/Unmarked” into marked. It then determines if there are
objects that reference one another in a cyclic manner. These
objects are not referenced by any other objects but by
themselves thus they are considered to be garbage. Upon
detection, the Cycle Detection marks the parameters of these
object for collection. After marking and cycle detection, the
system will now then pass through the heaps to collect all
marked objects by sweeping. And upon collection, all of the
remaining objects are considered to be alive and non-garbage
objects. Thus their TTL timers are refreshed and the entire
garbage detection and collection starts again.

5. ANALYSIS
There are different ways to test and verify the algorithm for
distributed garbage collection, in this research we will be using
server client approach, token ring approach and the barrier sync
approach [9].

In the client server approach, a server generates a resource and
randomly assigns it to any client. The server generates random
amount of resources per interval and assigns them with random
amount of time to live parameter. The server also randomly
renews the time to live value of random resources and link them
randomly to be able to create a cycle. The algorithm will have to
detect if the allocated resources have become garbage and
detects if there are cyclic garbages within them [9].

Another approach in testing the distributed garbage collection is
the token ring approach. The computers are connected in a ring
topology and whenever an idle computer gets a hold on the
token, it will generate its own set of resources that will have
random amounts of time to live values. Random instances of

5

resources will be connected across the network and will have
cyclic attributes. These resources will be able to communicate
with each other and determine which among the resources are
ready for garbage collection [9].

Lastly the barrier sync can also be used for testing, wherein an
enormous number of processes are created and have a short time
to live parameter and the idea is that the algorithm must be able
to process many instances of the same process and be able to
reclaim them as soon as possible, this behavior is random when
distributing the processes and is a good test for the algorithm.
This approach enables the system to be tested for its handling
capacity. Since the system will be overloaded with a huge
number of resources to be collected at the same time, we will be
able to benchmark its capabilities and its failing points [9].

The theoretical framework is implemented in Java using threads.
It is composed of two primary running threads which is the (i)
Object Creator and the (ii) Garbage Collector. Threads were
used in order to simulate individual running processes on
different processor cores.

The Object Creator indefinitely generates random threads
(Objects) simulating different applications. Each object has their
own Time-to-Live parameter as well as attributes to determine
related characteristics. The Garbage Collector performs the
necessary procedures as discussed in the theoretical framework
to perform garbage collection. The memory is represented as a
fixed size ArrayList of Objects.

The system is set to run on different scenarios wherein a fixed
maximum number of objects are created and the system is tested
for its completeness meaning if it can successfully detect,
classify and collect garbage objects. For the scenario, the system
ran on 1000 to 5000 object creations with a memory of 500
objects simultaneously running and an average time to live of
objects at 30 seconds. Note that these numbers are randomly
chosen especially the time to live parameters.

Figure 1 Overall system performance

Based on our test as shown in figure, our system is able to run in
a linear fashion such that as the number of objects created and

deleted and detected increase, the processing time also increase
by the same amount. Figure 1 shows irregularities in the linear
movement of the graph. These are due to the performance drops
with certain values of objects created, but overall our system is
capable of performing just like what other algorithms are
capable of and maybe more.

6. CONCLUSION AND FUTURE
DIRECTIONS
In this study, we have proposed a new algorithm in distributed
garbage collection. This algorithm has been simulated into an
environment and compares the results with the other algorithm.
Based from the result the new algorithm performed better and is
a general algorithm which can in turn be implemented to
different settings. Overall we have achieved our goal of creating
a general algorithm for distributed garbage collection.

For future work, it is recommended to test the system under
different scenarios and system setups so that the irregularities
can be further explained. Since the algorithm aims to provide a
generic or standard means of garbage collection in a distributed
environment, it would be very beneficial if the algorithm will be
tested in a wide variety of distributed environments and not just
on what has been used. Also, including other garbage collection
methods or algorithm features may further improve the
performance of our system. Though the algorithm has already
showed an improved performance as opposed to existing
algorithms, there may still be useful algorithm features and
garbage collection methods which are left undiscovered.

References
[1] Cobb, Michael (2007). How to avoid dangling pointers: Tiny

programming errors leave serious security
vulnerabilities. Retrieved November 17, 2009 from
http://searchsecurity.techtarget.com/
tip/0,289483,sid14_gci1271770,00.html

[2] Cohen, M., Kooi, S. & Srisa-an, W. (2006). Clustering the

Heap in Multi-Threaded Applications for Improved
Garbage Collection. Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
pp. 1901 – 1908.

[3] Crockford, Douglas. (n.d.). JScript Memory Leaks.

Retrieved November 17, 2009 from http://javascript.
crockford.com/memory/leak.html

[4] Dangling pointers. Retrieved November 17, 2009 from

http://www.ccs.neu.edu/home/will/com1205
/dangling.html

[5] Görtz, Thorsten. The “More for C++” Garbage Collector.

Retrieved November 17, 2009 from
http://www.morefor.org/documentation/gc.html

Ti
m

e
in

 se
co

nd
s

Number of objects created and detected

6

[6] Grossman, D. (2007). The Transactional Memory / Garbage
Collection Analogy. Proceedings of the 22nd annual
ACM SIGPLAN conference on Object-oriented
programming systems and applications, pp. 695 – 706.

[7] Jones, Richard and Lins, Rafael (1999). Garbage Collection:

Algorithms for Automatic Dynamic Memory
Management. John Wiley and Sons Ltd.

[8] Kapadia, V. & Thakore, D. (2009). Distributed Garbage

Collection Using Client Server Approach in Train
Algorithm. Proceedings from the 2009 IEEE
International Advance Computing Conference, pp 492
- 495.

[9] Klintskog, E. (2005). Component-Based Distributed Garbage

Collection. ACM Transactions on Programming
Languages and Systems (TOPLAS),

[10] Knobe, K., Harel, N. & Mandviwala, H. (2006). Distributed

Garbage Collection Algorithms for Timestamped
Data. IEEE Transactions on Parallel and Distributed
Systems, 17 (10), 1057-1071.

[11] McCarthy, John (1960). Recursive functions of symbolic

expressions and their computation by machine.
Communications of the ACM, 184-195. Retrieved
November 17, 2009 from http://www-
formal.stanford.edu/jmc/recursive.html

[12] Memory leaks in C++ and how to avoid them. Retrieved

November 17, 2009 from http://www.
codersource.net/c++_memory_leaks.aspx

[13] Ning, Z., Zhang, C., Yang Xia, G. X., “A Hybrid

Distributed Garbage Collection of Active Objects.”

IEEE International Conference on Embedded
Software and Systems Symposia, 2008, pp. 13 – 16.

[14] Pizlo, F., Frampton, D. & et al. (2007). STOPLESS: A

Real-Time Garbage Collector for Multiprocessors.
Proceedings of the 6th international symposium on
Memory management, pp 159-172.

[15] Priess, Bruno R. (n.d.). Mark-and-Sweep Garbage

Collection. Retrieved November 17, 2009 from
http://www.
brpreiss.com/books/opus5/html/page424.html

[16] Sung-Wook Ryu, Eul Gyu Im & Clifford Neuman,

B.(2003). Distributed Garbage Collection by Timeouts
and Backward Inquiry. IEEE Computer Society
Proceedings of the 27th Annual International
Conference on Computer Software and Applications
Page: 426

[17] Veiga, L. & Ferreira, P. (2005). Asynchronous Complete

Distributed Garbage Collection. Proceedings of the
19th IEEE International Parallel and Distributed
Processing Symposium, pp 1-10.

[18] Veiga, L., Pereira, P. and Ferreira P. (2007). Complete

distributed garbage collection using DGC-consistent
cuts and .NET AOP-support. IET Softw., Vol. 1 No. 6,
263 - 279. Retrieved September 24, 2009 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnum
ber=4435105 &isnumber=4435100

[19] Wang, W. and Varela C., “Distributed Garbage Collection

for Mobile Actor Systems: The Pseudo Root
Approach,” In GPC’06. Springer-Verlag, 2006.

